[ARTIKEL REVIEW]

LEUKOCYTES COUNT IN THE ISCHEMIC AND HEMORRHAGIC STROKE PATIENT

Seulanga Rachmani Mira Hamzah

Faculty of medicine, Lampung University

Abstract

Stroke is one of the disease which causes high morbidity and mortality rate in patient. This condition has correlation with brain tissue damage in the stroke patient. Studies found that accumulation of leukocytes in a non hemorrhagic stroke patient were found mostly in the center of ischemic part of the injured brain. Wheres it didn't find in the patient with small infark on MRI and Ct-Scan. Hemorrhagic patient, accumulation of leukocytes occurred in all patient. This review discuss about the leukocytes count in the ischemic and hemorrhagic stroke patients does the leukocytes count can be used to analize the level of the brain tissue injury in stroke patient?

Keywords: brain damage, leukocytes, patient, stroke

Abstrak

Stroke merupakan salah satu penyakit yang menyebabkan morbiditas dan mortalitas yang tinggi pada penderitanya. Besarnya angka mortalitas dan morbiditas pada penderita stroke berhubungan dengan kerusakan pada jaringan otak. Dari studi menyatakan bahwa Akumulasi leukosit pada pasien stroke non hemoragik lebih banyak didapatkan pada bagian tengah iskemik. Namun akumulasi leukosit tidak didapatkan pada pasien dengan ukuran infark yang kecil pada MRI dan CT-Scan. Sedangkan pada pasien stroke hemoragik, akumulasi leukosit didapatkan pada semua pasien. Dari diskusi ini membahas apakah jumlah hitung leukosit pada stroke iskemik dan hemoragik dapat di gunakan untuk menganalisa tingkatan jaringan otak yang terluka pada penderita stroke?

Kata kunci: Kerusakan otak, leukosit, pasien, stroke

. . .

Korespondensi: Seulanga Rachmani Mira Hamzah | seulanga.rachmani@yahoo.com

Pendahuluan

Stroke salah satu penyakit yang menyebabkan morbiditas dan mortalitas yang tinggi pada penderitanya. Selain sebagai penyebab kematian nomor tiga setelah penyakit jantung dan kanker dan penyebab utama kecacatan pada negaranegara industri. Stroke iskemik adalah jenis stroke yang paling umum, terjadi sekitar 80% dari semua kasus stroke. Stroke juga merupakan penyebab kecacatan jangka panjang nomor satu di dunia.¹

Menurut American Heart Association, diperkirakan terjadi 3 juta penderita stroke pertahun dan 500.000 penderita stroke yang baru terjadi pertahun. Sedangkan angka kematian penderita stroke di Amerika yaitu 50-100/100.000 penderita pertahun. Angka kematian tersebut mulai menurun sejak awal tahun 1900, dimana angka kematian sesudah tahun 1969 menurun hingga 5% pertahun. Beberapa peneliti mengatakan bahwa hal tersebut akibat kejadian penyakit yang menurun yang disebabkan karena kontrol yang tidak baik terhadap faktor resiko penyakit stroke.

Di negara-negara ASEAN, penyakit stroke juga merupakan masalah kesehatan utama yang menyebabkan kematian. Dari data South East Asian Medical Information Centre (SEAMIC) diketahui bahwa angka kematian akibat stroke terbesar terjadi di Indonesia yang

kemudian diikuti secara berurutan oleh Filipina, Singapura, Brunei, Malaysia, dan Thailand. 12

Di Indonesia diperkirakan setiap tahun terjadi 500.000 orang terkena serangan stroke dan 125.000 orang meninggal dunia dengan Case Fatality Rate (CFR) 25% dan yang mengalami cacat ringan atau berat dengan proporsi 75% (375.000 orang).² Dari seluruh penderita stroke di Indonesia, stroke iskemik merupakan jenis yang paling banyak diderita yaitu sebesar 52,9%, diikuti secara berurutan oleh perdarahan intraserebral, emboli dan perdarahan subarakhnoid dengan angka kejadian sebesar 38,5%, 7,2%, dan 1,4%.¹²

Dari data diatas, dapat disimpulkan bahwa pencegahan pengobatan yang tepat pada penderita merupakan hal yang stroke sangat pengetahuan penting, dan tentang patofisiologi stroke sangat berguna untuk menentukan pencegahan dan pengobatan tersebut, agar dapat menurunkan angka kematian dan kecacatan.

DISKUSI

Stroke dapat terjadi akibat perdarahan spontan di dalam otak (stroke hemoragik) atau kurangnya pasokan darah yang memadai ke otak (stroke non hemoragik) sebagai akibat dari sumbatan bekuan darah, penyempitan pembuluh darah. Besarnya angka mortalitas dan morbiditas pada penderita berhubungan dengan kerusakan pada jaringan otak.²

Faktor resiko kejadian stroke dibedakan menjadi faktor risiko yang tidak dapat diubah atau tidak dapat dimodifikasi dan faktor risiko yang dapat diubah atau dapat dimodifikasi. Faktor risiko yang tidak dapat diubah diantaranya peningkatan usia dan jenis kelamin. Faktor risiko yang dapat diubah antara lain

hipertensi, diabetes melitus, gaya hidup dan dislipidemia. 13.14

Berdasarkan penelitian yang dilakukan oleh Muhibbi (2004) di jelaskan bahwa, besarnya luas kerusakan pada otak berhubungan jaringan dengan adanya akumulasi leukosit.³ Akumulasi leukosit pada pasien stroke hemoragik lebih banyak didapatkan pada bagian tengah iskemik. Namun akumulasi leukosit tidak didapatkan pada pasien dengan ukuran infark yang kecil pada pemeriksaan CT-Scan dan MRI. Sedangkan pada pasien stroke hemoragik, akumulasi leukosit didapatkan pada semua pasien.³

Pengerahan leukosit ke jaringan otak pada pasien stroke merupakan salah satu hasil dari reaksi Sistem Saraf Pusat (SSP), dimana masuknya leukosit ke otak yang mengalami *injury* dimulai dengan adhesi ke endotel sampai di jaringan otak melalui beberapa tahap.

Awalnya, leukosit muncul setelah terjadi pelepasan sitokin pada daerah injury yang merangsang leukosit yang berada di marginal pool dan leukosit matur di sumsum tulang memasuki sirkulasi. Jenis leukosit yang dikerahkan pada peradangan akut ini adalah neutrofil.4 Dalam sirkulasi, neutrofil di golongkan kedalam dua pool. Satu pool disirkulasi bebas dan yang kedua adalah pool di tepi dinding pembuluh darah. Ketika ada stimulasi oleh infeksi, inflamasi, obat atau toksin metabolik, pool sel yang di tepi dinding pembuluh darah akan melepaskan diri ke dalam sirkulasi.4

Tatalaksana stoke iskemik dan stoke hemoragik;

a. Stroke Iskemik

Terapi umum:

Letakkan kepala pasien pada posisi 300, kepala dan dada pada satu bidang; ubah posisi tidur setiap 2 jam; mobilisasi dimulai bertahap bila hemodinamik sudah

stabil. Selanjutnya, bebaskan jalan napas, beri oksigen 1-2 liter/menit sampai didapatkan hasil analisis gas darah. Jika perlu, dilakukan intubasi. Demam diatasi dengan kompres dan antipiretik, kemudian dicari penyebabnya; jika kandung kemih penuh, dikosongkan (sebaiknya dengan kateter intermiten). Pemberian nutrisi dengan cairan isotonik, kristaloid atau koloid 1500-2000 mL dan elektrolit sesuai kebutuhan, hindari cairan mengandung glukosa atau salin isotonik. Pemberian nutrisi per oral hanya jika fungsi menelannya baik; jika didapatkan gangguan menelan atau kesadaran menurun, dianjurkan melalui selang nasogastrik.

Kadar gula darah >150 mg% harus dikoreksi sampai batas gula darah sewaktu 150 mg% dengan insulin drip intravena selama 2-3 hari pertama. Hipoglikemia (kadar gula darah <60 mg% atau <80 mg% dengan gejala) diatasi segera dengan dekstrosa 40% iv sampai kembali normal dan harus dicari penyebabnya.

Nyeri kepala, mual dan muntah diatasi dengan pemberian obat-obatan sesuai gejala. Tekanan darah tidak perlu segera diturunkan, kecuali bila tekanan sistolik ≥220 mmHg, diastolik ≥120 mmHg, Mean Arterial Blood Pressure (MAP) ≥ 130 mmHg (pada 2 kali pengukuran dengan selang waktu 30 menit), atau didapatkan infark miokard akut, gagal jantung kongestif serta gagal ginjal. Penurunan tekanan darah maksimal adalah 20%, dan obat yang direkomendasikan: natrium nitroprusid, penyekat reseptor alfa-beta, penyekat ACE, atau antagonis kalsium.

Jika terjadi hipotensi, yaitu tekanan sistolik ≤ 90 mm Hg, diastolik ≤ 70 mmHg, diberi NaCl 0,9% 250 mL selama 1 jam, dilanjutkan 500 mL selama 4 jam dan 500 mL selama 8 jam atau sampai hipotensi dapat diatasi. Jika belum

terkoreksi, yaitu tekanan darah sistolik masih <90 mmHg, dapat diberi dopamin 2-20 μg/kg/menit sampai tekanan darah sistolik ≥ 110 mmHg.

Jika kejang, diberi diazepam 5-20

mg secara intravena perlahan selama 3 menit, maksimal 100 mg per hari; dilanjutkan pemberian antikonvulsan per oral (fenitoin, karbamazepin). Jika kejang muncul setelah 2 minggu, diberikan antikonvulsan peroral jangka panjang. Jika didapatkan tekanan intrakranial meningkat, diberi manitol bolus intravena 0,25 sampai 1 g/ kgBB per 30 menit, dan jika dicurigai fenomena keadaan umum memburuk, dilanjutkan 0,25g/kgBB per 30 menit setiap 6 jam selama 3-5 hari. Harus dilakukan pemantauan osmolalitas (<320 mmol); sebagai alternatif, dapat diberikan larutan hipertonik (NaCl 3%) atau furosemid.

Terapi khusus:

Ditujukan untuk reperfusi dengan pemberian antiplatelet seperti aspirin dan anti koagulan, atau yang dianjurkan dengan trombolitik rt-PA (recombinant tissue Plasminogen Activator). Dapat juga diberi agen neuroproteksi, yaitu sitikolin atau pirasetam (jika didapatkan afasia).

b.Stroke Hemoragik

Terapi umum:

Pasien stroke hemoragik harus dirawat di ICU jika volume hematoma >30 mL, perdarahan intraventrikuler dengan hidrosefalus, dan keadaan klinis cenderung memburuk.

Tekanan darah harus diturunkan sampai tekanan darah premorbid atau 15-20% bila tekanan sistolik >180 mmHg, diastolik >120 mmHg, MAP >130 mmHg, dan volume hematoma bertambah. Bila terdapat gagal jantung, tekanan darah harus segera diturunkan dengan labetalol secara iv 10 mg (pemberian dalam 2 menit) sampai 20 mg (pemberian dalam

10 menit) maksimum 300 mg; enalapril iv 0,625-1.25 mg per 6 jam; kaptopril 3 kali 6,25-25 mg per oral.

Jika didapatkan tanda tekanan intracranial meningkat, posisi kepala dinaikkan 300, posisi kepala dan dada di satu bidang, pemberian manitol dan hiperventilasi (pCO2 20-35 mmHg).

Penatalaksanaan umum sama dengan pada stroke iskemik, tukak lambung diatasi dengan antagonis H2 parenteral, sukralfat, atau inhibitor pompa proton; komplikasi saluran napas dicegah dengan fisioterapi dan diobati dengan antibiotik spektrum luas.

Terapi khusus:

Neuroprotektor dapat diberikan kecuali yang bersifat vasodilator. Tindakan bedah mempertimbangkan usia dan letak perdarahan yaitu pada pasien yang memburuk kondisinya kian dengan perdarahan serebelum berdiameter >3 cm3, hidrosefalus akut akibat perdarahan intraventrikel atau serebelum, dilakukan VP-shunting, dan perdarahan lobar >60 ml peningkatan dengan tanda tekanan intrakranial akut dan ancaman herniasi.

Pada perdarahan subarakhnoid, dapat digunakan antagonis Kalsium (nimodipin) atau tindakan bedah (ligasi, embolisasi, ekstirpasi, maupun gamma knife) jika penyebabnya adalah aneurisma atau malformasi arteri-vena (arteriovenous malformation, AVM).¹⁵

Hubungan jumlah leukosit berdasarkan jenis stroke

Berdasarkan penelitian yang dilakukan oleh Tiara (2013) didapatkan hasil bahwa pasien dengan stroke yang memiliki hemoragik jumlah leukositnomal sebanyak 10 orang dan meningkat sebanyak 27 orang. Pasien dengan stroke non hemoragik yang memiliki jumlah leukosit nomal sebanyak 26 orang dan meningkat sebanyak 11 orang. Sehingga dapat disimpulkan banyaknya pasien dengan stroke yang peningkatan hemoragik jumlah leukosit lebih besar dibandingkan pasien stroke non hemoragik. Hasil uji statistik chi-sqare didapatkan nilai p= 0,000, sehingga dapat disimpulkan adanva hubungan yang bermakna antara jenis stroke dengan jumlah leukosit.5

Berdasarkan penelitian yang dilakukan oleh Muhibbi (2004) di jelaskan bahwa, besarnya luas kerusakan pada jaringan berhubungan dengan akumulasi leukosit.³ Akumulasi leukosit pada pasien stroke non hemoragik lebih banyak didapatkan pada bagian tengah iskemik. Namun akumulasi leukosit tidak didapatkan pada pasien dengan ukuran infark yang kecil pada CT- Scan dan MRI. Sedangkan pada pasien stroke hemoragik, akumulasi leukosit didapatkan semua pasien.³ Pada serangan stroke, leukosit teraktifasi dan menyebabkan inflamasi. Aktivasi ini akan meningkatkan adesi leukosit ke endotel dan selanjutnya migrasi ke dalam parenkim otak. Efek leukosit dalam patogenesis kerusakan iskemik serebral dengan cara:

- 1. *Plugging* mikrovaskuler serebral dan pelepasan mediator vasokonstriksi endotel sehingga memperberat penurunan aliran darah.
- 2.Eksaserbasi kerusakan blood brain barrier dan parenkim melalui pelepasan enzim hidrolitik, proteolitik, produksi radikal bebas peroksidase. Reaksi dan lipid inflamatoris ini tidak hanya pada peroksidasi berperan membran bigil namun juga memperburuk derajat dari kerusakan jaringan yang disebabkan oleh efek-efek dari leukosit-leukosit yang lengket dalam darah yang mengganggu perfusi mikrovaskular.

Kerusakan juga bertambah karena produk-produk neurotoksik leukosit.³

Pengerahan leukosit ke jaringan otak pada pasien stroke merupakan salah satu hasil dari reaksi Sistem Saraf Pusat (SSP), dimana masuknya leukosit ke otak yang mengalami *injury* dimulai dengan adhesi ke endotel sampai di jaringan otak melalui beberapa tahap yaitu:³

- a Migrasi leukosit dari darah ke otak dimulai dengan interaksi leukositendotel dengan rolling yang diperantarai oleh P-selektin dan Eselektin pada permukaan endotel, dan L-selektin pada leukosit. Sejak aktivasi ini leukosit melekat pada tepi endotel melalui reseptor glikoprotein dinding leukosit (disebut sebagai CD-18 atau b2integrin) dan ligand dari endotel, adhesion intracelluler molecule (ICAM-1).
- b.Membran leukosit yang terdiri dari glikoprotein yang komplek yang bertanggung iawab terhadap perlekatan ini disebut CD-18 (b2integrin). Komplek ini terdiri dari 3 heterodimers, ketiganya mempunyai unit beta yang sama (seringkali disebut sebagai CD-18) dan yang membedakan satu dengan lainnya adalah tiga subunit ini dinamakan: Leukocyte function antigen (LFA-1 atau CD-l l a, ada pada semua leukosit), MAC-I (CD-1I b, ada pada kebanyakan PMN dan monosit), dan PI5 0 (CD-11c, ada pada neutrophil dan monosit).
- c.Reseptor-reseptor yang sesuai untuk CD-18 integrin complex adalah golongan molekul adhesi seperti (ICAM) intracellular adhesion molecul. ICAM-1 secara luas terdapat pada banyak sel dan berikatan dengan LFA-1 dan MAC-I,

- ICAM-2 hanya terdapat pada sel endotel dan leukosit dan hanya berikatan dengan LFA-l saja. Tidak seperti ICAM-2 yang ada pada keadaan normal, ICAM-i muncul dengan adanya induksi oleh sitokin peradangan seperti IL-l dan TNF α . Seperti yang disampaikan didepan bahwa CD-18/ICAM-i merangsang peningkatan adhesi neutrophil setelah stroke.
- d. Leukosit tampak pada jaringan SSP yang mengalami iskemik telah dimengerti sebagai respon patofisiologi terhadap adanya lesi. Bukti yang baru menyatakan bahwa leukosit bisa juga secara terlibat langsung dalam patogenesis dan perluasan dari lesi SSP setelah perfusi ulang. Dua mekanisme keterlibatan leukosit dalam reperfusion injury adalah pada tingkat sirkulasi menyumbat mediator mikrosirkulasi dan vasokonstriktor serta pada jaringan otak melepaskan enzim hidrolitik, lipid peroksidase dan pelepasan bebas. radikal Dengan menggunakan antibodi spesifik monoklonal yang secara langsung menghalangi menempelnya leukosit ke reseptor, penyumbatan mikrosirkulasi dan infiltrasi dapat diturunkan. Pada penelitian hewan percobaan yang mengalami stroke diberikan antibodi yang mengikat molekul CD-18 leukosit atau ligand sel endotel yaitu ICAM-1 didapatkan adanya penurunan kerusakan akibat stroke. Akan tetapi pada penelitian yang lain pemberian enlimomab (anti ICAM-1) didapatkan hasil yang buruk yang mungkin karena timbulnya antibodi terhadap enlimomab tersebut. Pengerahan leukosit ke

jaringan otak pada pasien stroke iskemik akut merupakan salah satu hasil dari reaksi iskemik SSP, leukosit muncul setelah terjadi pelepasan sitokin pada daerah iskemik yang merangsang leukosit yang berada di marginal pool dan leukosit matur di sumsum tulang memasuki sirkulasi. Jenis leukosit yang dikerahkan pada peradangan akut ini adalah neutrofil. Leukosit itu sendiri dapat menimbulkan lesi yang lebih luas pada daerah iskemik dengan cara menyumbat mikrosirkulasi dan vasokonstriksi serta infiltrasi ke neuron kemudian melepaskan enzim hidrolitik. pelepasan radikal bebas dan lipid peroksidase.3

Perbedaan rerata jumlah leukosit berdasarkan jenis stroke

Pengerahan leukosit ke jaringan otak pada pasien stroke merupakan salah satu hasil dari reaksi Sistem Saraf Pusat (SSP), dimana masuknya leukosit ke otak yang mengalami injury dimulai dengan adesi ke endotel sampai di jaringan otak melalui beberapa tahap. Awalnya, leukosit muncul setelah terjadi pelepasan sitokin pada daerah injury yang merangsang leukosit yang berada di marginal pool dan leukosit matur di sumsum tulang memasuki sirkulasi. Jenis leukosit yang dikerahkan pada peradangan akut ini neutrofil.4 adalah Dalam sirkulasi, neutrofil di golongkan kedalam dua pool. Satu pool disirkulasi bebas dan yang kedua adalah pool di tepi dinding pembuluh darah. Ketika ada stimulasi oleh infeksi. inflamasi, obat atau toksin metabolik, pool sel yang di tepi dinding pembuluh darah akan melepaskan diri ke dalam sirkulasi.4

Kembalinya perfusi darah ke jaringan otak yang iskemik penting untuk

kembalinya fungsi normal otak. Akan tetapi kembalinya aliran darah dapat juga menimbulkan kerusakan otak yang lebih progresif, sehingga menimbulkan disfungsi jaringan dan infark lebih lanjut. Reperfusion injury ini disebabkan oleh banyak faktor tetapi tampaknya lebih banyak disebabkan oleh respon inflamasi, yaitu dengan kembalinya aliran darah beberapa proses inflamasi akan memperkuat lesi iskemik.4

Sitokin adalah protein dengan berat molekul kecil yang mempunyai berbagai aktifitas biologis, aktif pada konsentrasi yang kecil. Sitokin timbul sebagai reaksi primer terhadap stimulasi dari luar dan tidak ada pada hemostasis yang normal.⁴

Sebagai konsekuensi langsung ketidak seimbangan ion dan akumulasi kalsium bebas yang timbul akibat lesi iskemik otak, maka dilepaskan asam amino bebas dan pro inflammatory lain hasil metabolisme lemak. Hal ini dipercaya meningkatkan, menimbulkan dan melepaskan kaskade sitokin pro inflammatory. Pada kaskade pro inflammatory yang pertama dikeluarkan adalah Interleukin-I dan Tumor Necrosis Factor Alpha, sitokin ini yang kemudian merangsang dikeluarkannya sitokin pro inflammatory yang lain (spt IL-6 dan IL-8), aktivasi dan infiltrasi dari leukosit dan memproduksi anti inflamasi (termasuk IL-4 dan IL-10 yang mungkin merupakan negatif feedback kaskade ini).4

Sitokin pro inflammatory diproduksi oleh bermacam-macam sel (seperti sel neuron, mikroglia, astrosit dan leukosit), sitokin ini menyebabkan SSP, apoptosis diferensiasi dan sel proliferasi seperti pengaruh akibat infiltrasi oleh leukosit. Peningkatan kadar IL- I, TNF α, IL-6 dan IL-8 telah diamati pada iskemia SSP 141- 6 Konsentrasi IL-lp mulai muncul setelah 1 - 3 jam maksimal pada 12 jam tetap ada sampai 5 hari dan

konsentrasi TNF α mulai muncul setelah 6 jam maksimal pada 12 jam tetap ada sampai 5 hari. Beberapa bukti tidak langsung tentang keterlibatan interleukin pada iskemia SSP didapat dari sejumlah penelitian klinis yakni dengan dijumpai kadar IL-6 di cairan serebro spinal dan plasma sebagai faktor prediksi kembalinya fungsi pada pasien dan berkorelasi dengan ukuran infark. Bukti lain menunjukkan bahwa sitokin merupakan komponen kunci pada aktivasi dan pengerahan leukosit di SSP IL- I, TNF α , IL-6 dan IL-8 telah diketahui mengaktifasi leukosit dan meningkatkan adhesi pada leukosit (CD-18), endotel dan sel astrosit (ICAM-1).4

Sitokin merupakan komponen kunci pada aktivasi dan pengerahan leukosit di SSP IL- I, TNF α, IL-6 dan IL-8 telah diketahui mengaktifasi leukosit dan meningkatkan adhesi pada leukosit (CD-18), endotel dan sel astrosit (ICAM-1).⁴ Migrasi leukosit dari darah ke otak dimulai dengan interaksi leukosit endotel dengan *rolling* yang diperantarai oleh P-selektin dan E-selektin pada permukaan endotel, dan L-selektin pada leukosit.⁴

Dengan semakin tinggi jumlah leukosit darah, semakin besar volume lesi. Hal ini disebabkan pada leukosit teraktivasi menyebabkan kerusakan lebih jauh pada lesi iskemik melalui mekanisme reperfusi atau cedera sekunder. 6 Guven H dkk (2010)pada penelitiannya mengatakan bahwa jumlah leukosit dan neutrofil yang tinggi berhubungan dengan penyakit pembuluh darah dan dapat keparahan strok.⁷ prediktor menjadi Menurut Hatta SW dkk (2010), dalam penelitiannya, bahwa semakin tinggi volume lesi maka semakin tinggi pula jumlah leukosit dan neutrofil baik pada stroke iskemik maupun strok hemoragik, sehingga jumlah lekosit yang tinggi dapat digunakan untuk memprediksi besarnya volume lesi. 8

Sedangkan menurut Buck H.B dkk, pada penelitiannya menyimpulkan bahwa leukosit perifer dan jumlah neutrofil yang tinggi, tidak termasuk jumlah limfosit berhubungan dengan besarnya volume infark pada stroke iskemik akut.⁹

Penyebab peningkatan jumlah leukosit pada dasarnya didasari oleh dua penyebab dasar yaitu: ^{3.4}

- a. Reaksi yang tepat dari sumsum tulang normal terhadap stimulasi eksternal (infeksi, inflamasi nekrosis jaringan, infark, luka bakar, artritis), stres (over exercise, kejang, kecemasan, anastesi), obat (kortikosteroid, lithium, beta agonis), trauma (splenektomi), anemia hemolitik dan leukemoid maligna.
- Efek dari kelainan sumsum tulang primer (leukemia akut, leukemia kronis)

Dalam jaringan otak, kurangnya aliran darah menyebabkan serangkaian reaksi biokima, yang dapat merusak atau mematikan sel-sel otak. Kematian jaringan otak dapat menyebabkan hilangnya fungsi yang dikendalikan oleh jaringan tersebut. Stroke adalah penyakit dengan patofisiologi sangat kompleks. yang Keterlambatan intervensi dalam hitungan jam, hari bahkan minggu pertama setelah oklusi pembuluh darah, dapat menimbulkan perburukan atau kerusakan karena dalam waktu singkat sel saraf di dalam jaringan inti (core) iskemik akan mati, sementara mayoritas sel saraf yang survive di daerah penumbra juga akan bertahan dalam waktu yang tidak terlalu lama. 10.11

SIMPULAN

Stroke dapat terjadi akibat perdarahan spontan di dalam otak (stroke hemoragik) atau kurangnya pasokan darah yang memadai ke otak (stroke non

hemoragik) sebagai akibat dari sumbatan bekuan darah, penyempitan pembuluh darah. Besarnya angka mortalitas dan morbiditas pada penderita stroke berhubungan dengan kerusakan pada jaringan otak. Jumlah hitung leukosit pada stroke dimana pada hemoragik terjadi peningkatan jumlah leukosit lebih besar di bandingkan pasien stroke iskemik. Semakin tinggi volume lesi maka semakin tinggi jumlah leukosit dan neutrofil baik pada stroke iskemik stroke hemoragik sehingga maupun jumlah hitung leukosit yang tinggi dapat di gunakan untuk memprediksi besarnya volume lesi dan tingkat keparahan stroke.

DAFTAR PUSTAKA

- Steffens DC, Krishnan RR, Crump C, Burke GL. Cerebrovascular disease and evolution of depressive symptoms in the cardiovascular health study. Florida: Comprehensive Stroke Program at University of Florida; 2002.
- 2. Iskandar J. Pencegahan dan Pengobatan Stroke. Jakarta: Buana ilmu popular; 2006.
- Muhibbi S. Jumlah Leukosit Sebagai Indikator Keluaran Penyakit Stroke Iskemik [Tesis].
 Semarang (Indonesia): Pasca Sarjana Universitas Diponegoro; 2004.
- Laura B, dkk. Hubungan Kadar Neutrofil dengan Keluaran Klinis Pasien Penderita Stroke Iskemik. [Jurnal]. Makasar: Fakultas Kedokteran UNHAS; 2013.
- Monica, T. Perbandingan Hitung Jenis Leukosit Pada Pasien Stroke Hemoragik dan Stroke Non Hemoragik di Bangsal Saraf RSUAM. [Skripsi]. Bandar Lampung; FK UNMAL. 2013
- 6. Wang Q; Tang XN; Yenari MA.The inflammatory response in stroke. *Journal Neuroimunology*. 2007; 184: 53-56
- Guven H; Cilliler A.E; Sarikaya S.A; Koker C; Comoglu S.S. The Etiologicand Prognostic Importance of High Leukocyte and Neutrophill Counts in Acutelschemic Stroke. *Journal of Neurological Sciences*. 2010;27(3):311-318.

- Hatta S.W; Ilyas M ;Murtala B; Liyadi F.Profil Hitung Leukosit Darah Pada FaseAkut Stroke Hemoragik dan Stroke Iskemik di Hubungkan Volume Lesi Pada Pemeriksaan CT Scan Kepala. [Tesis]. Universitas Hasanuddin Makassar. 2010
- Buck B. H., et al. Early Neurophilia Is Associated With Volume Of Icshemic Tissue in Acute Stroke: A Journal of Cerebral Circulation.2008; 39:355-360.
- Mitsios N; Gaffney J et al. Pathophysiology of Acute Ischemic Stroke: An Analysis of Common Signalling Mechanisms and Identification of New Molecular Targets. Pathobiology 2006; 73:159-175.
- 11. Mohr J.P; Wolf P.A; Grotta J.C et al.*STROKE.*Pathophysiology, Diagnosis, and

 Management. Fifth Edition. Elsevier Sauder.

 2011
- A, Basjiruddin ; darwin Amir (ed.). 2008. Buku Ajar Ilmu Penyakit Saraf (Neurologi) edisi 1.
 Bagian Ilmu Penyakit Saraf Fakultas Kedokteran Universitas Andalas .
- Marks, Dawn B; Marks, Allan D; Smith, Collen M. 2000. Basic Medical Biochemistry: A Clinical Approach. Terjemahan; Brahm U. Pendit. Biokimia Kedokteran Dasar Sebuah Pendekatan Klinis. Jakarta: EGC.
- Nastiti, Dian. 2012. Gambaran Faktor Risiko Kejadian Stroke pada pasien Stroke Rawat Inap di Rumah Sakit Krakatau Medika Tahun 2011. Skripsi, Universitas Indonesia
- 15. Setyopronoto I. *Gejala dan penatalaksanaan Stroke*. [Jurnal]. Yogyakarta: Bagian Ilmu Penyakit Saraf RSUP Dr Sardjito. Fakultas Kedokteran UGM ;2009.

