The Influence of Giving Used Cooking Oil which Purified with the Noni Fruit (Morinda citrifolia) Overview of the Heart Muscle Cells Histopathology of Male Wistar Rat

Anindya A, Susianti, Windarti I, Muhartono Medical Faculty of Lampung University

ABSTRACT

Heating oil repeatedly will result formation of free radicals. Noni fruit is source of antioxidants which reduce the activity of free radicals in cell damage. The aim of this research to investigate the effect administration of used cooking oil and used cooking oil which purified by noni fruit on histopathologic heart muscle cells of male *Wistar* rats. In this study, 20 male *Wistar* rats divided randomly into 4 groups and given treatment for 4 weeks. K1 (normal control which only given standard feed and aquadest), K2 (given used cooking oil with 3 hours heating 10 mL/gram BW), K3 (given used cooking oil with 6 hours of heating which purified by noni fruit 10 mL/gram BW). After 4 weeks, taken part of rat heart with laparotomy. Then, made hematoxylin eosin preparations and observation amount of fatty infiltration. Result show fatty infiltration average of heart muscle cells in group 1: 0±0, group 2: 4.23±0.85, group 3: 12.15±2.03 and group 4: 2.22±0.33. Kruskal–Wallis test result, p value=0.000. At least this suggests that, there is difference fatty infiltration change in rat cardiac muscle cells between the two groups.

Key words: Used cooking oil, noni fruit, histopathology of muscle cells heart.

Pengaruh Pemberian Minyak Goreng Bekas yang Dimurnikan dengan Buah Mengkudu (*Morinda Citrifolia*) Terhadap Gambaran Histopatologi Sel Otot Jantung Tikus Wistar Jantan

ABSTRAK

Pemanasan minyak goreng berulang kali mengakibatkan terbentuknya senyawa radikal bebas. Salah satu buah yang menjadi sumber antioksidan adalah buah mengkudu. Tujuan penelitian untuk mengetahui adanya pengaruh pemberian minyak goreng bekas dan minyak goreng bekas yang dimurnikan dengan buah mengkudu terhadap gambaran histopatologi sel otot jantung tikus Wistar jantan. Pada penelitian ini, 20 tikus Wistar jantan dibagi dalam 4 kelompok secara acak dan diberi perlakuan selama 4 minggu. K1 (kontrol normal), k2 (diberi minyak goreng bekas 3 jam pemanasan 10 μl/gram bb), k3 (diberi minyak goreng bekas 6 jam pemanasan 10 µl/gram bb), k4 (diberi minyak goreng bekas 6 jam pemanasan yang dimurnikan dengan buah mengkudu 10 µl/gram bb). Setelah 4 minggu dilakukan pengambilan bagian jantung tikus dengan laparotomi. Setelah itu dibuat sediaan Hematoxylin Eosin dan dilakukan pengamatan terhadap jumlah infiltrasi lemak. Hasil penelitian didapatkan rerata persentase infiltrasi lemak dari sel otot jantung pada kelompok 1 yaitu sebesar 0%±0, kelompok 2 sebesar 4,23%±0,85, kelompok 3 sebesar 12,15%±2,03 dan kelompok 4 sebesar 2,22%±0,33. Hasil uji Kruskal-Wallis, diperoleh nilai p=0,000. Hal ini menunjukkan bahwa paling tidak terdapat perbedaan perubahan infiltrasi lemak pada sel otot jantung tikus antara dua kelompok.

Kata kunci: Minyak goreng bekas, buah mengkudu, histopatologi sel otot jantung.

Pendahuluan

Pada tahun 2011, konsumsi minyak goreng di Indonesia berada pada angka 3,4 juta ton dan tahun 2012 diperkirakan mencapai 4,5–4,8 juta ton (Noeltrg, 2012). Harga minyak goreng cenderung mengalami kenaikan setiap tahunnya. Pada tahun 2012 harga rata–rata minyak goreng kemasan 1000 ml adalah Rp 9.450,00 sedangkan pada tahun 2013 adalah Rp 13.716,00 (Deptan, 2013). Kebutuhan akan minyak goreng semakin meningkat di saat harga minyak goreng serta bahan pokok lainnya kian melambung sehingga banyak penggunaan minyak goreng berulang kali dengan alasan menghemat (Rukmini, 2007).

Pemanasan minyak goreng mengakibatkan serangkaian reaksi, yaitu hidrolisis, oksidasi dan polimerisasi (Ketaren, 2008). Pada reaksi oksidasi akan terbentuk senyawa peroksida dan hidroperoksida, seperti oleat hidroperoksida dan linoleat hidroperoksida yang merupakan senyawa radikal bebas (Ketaren, 2008). Radikal bebas ini akan menginduksi terjadinya jejas sel *reversible*, yaitu perubahan perlemakan terjadinya akumulasi tetes—tetes lemak dalam inti sel hepar, sel jantung maupun sel endothelial aorta (arteri besar), juga terlihat kongesti pada sel ginjal (Rukmini, 2007). Akumulasi tetes—tetes lemak pada sel otot jantung dapat mengakibatkan infiltrasi lemak interstitial, suatu kondisi akumulasi sel—sel lemak diantara sel parenkim suatu organ (Tambayong, 2000).

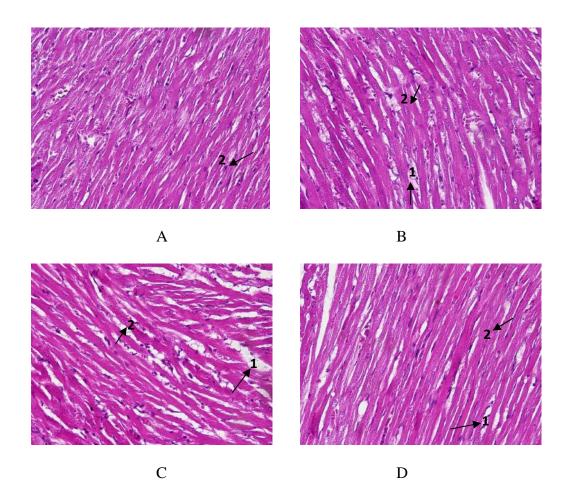
Mengingat banyaknya efek buruk terhadap kesehatan akibat minyak goreng yang digunakan berulang kali, dilakukanlah pemurnian minyak goreng bekas dengan menambahkan antioksidan (Rukmini, 2007). Salah satu buah yang menjadi sumber antioksidan adalah buah mengkudu. Kandungan antioksidan pada buah mengkudu adalah selenium, asam askorbat (vitamin C), beta karoten dan flavonoid, yang dapat mencegah reaksi oksidasi dan kerusakan sel oleh radikal bebas (Surya, 2009).

Metode

Penelitian ini menggunakan metode eksperimental laboratorik dengan rancangan acak terkontrol dengan menggunakan 20 ekor tikus *Wistar* jantan berumur 10–16 minggu yang dipilih secara random dan dibagi menjadi 4 kelompok yaitu k1 (kontrol negatif), k2 (minyak goreng bekas 3 jam pemanasan

10 μl/gram bb), k3 (minyak goreng bekas 6 jam pemanasan 10 μl/gram bb), k4 (minyak goreng bekas 6 jam pemanasan yang dimurnikan dengan buah mengkudu 10 μl/gram bb).

Pemurnian minyak goreng dilakukan dengan cara melumatkan buah mengkudu dengan blender, masukkan 4 sendok makan sari mengkudu ke dalam gelas kaca yang sudah diisi 100 ml minyak goreng bekas lalu aduk, diamkan 10–15 menit, panaskan hingga suhu 50–60 °C (diraba dengan tangan terasa hangat) atau biarkan 5 menit setelah terdengar bunyi gemericik sambil terus diaduk, diamkan 10–15 menit, saring minyak goreng bagian atas dengan menggunakan penyaring, endapannya dibuang (Mahmudatussa, 2013).


Tikus dilakukan penimbangan berat badan dan di adaptasikan selama 1 minggu. Masing-masing perlakuan diberikan dengan menggunakan sonde oral selama 4 minggu. Setelah 4 minggu, tikus dianastesi Ketamine-xylazine 75-100 mg/kg + 5-10 mg/kg secara IP dan dilakukan euthanasia dengan metode *cervical dislocation*. Setelah tikus dipastikan mati lalu dilakukan laparotomi dan diambil bagian jantung tikus. Setelah itu dilakukan fiksasi dengan formalin 10% lalu dibuat sediaan Hematoxylin Eosin dengan potongan longitudinal pada bagian ventrikel jantung. Pengamatan dilakukan dengan menggunakan mikroskop cahaya perbesaran 400 kali.

Pada penelitian ini dihitung persentase infiltrasi lemak yaitu jumlah sel–sel lemak diantara sel otot jantung dengan membuat 1 preparat yang dibaca dalam 5 lapang pandang. Perhitungan dilakukan dengan bantuan aplikasi *corel draw* untuk membuat kotak–kotak kecil sehingga dapat mempermudah untuk menghitung jumlah infiltrasi lemak dalam 1 lapang pandang. Dalam 1 lapang pandang terdapat 567 kotak. Karena dalam setiap 1 lapang pandang terdapat sel otot jantung penuh sehingga bisa dianggap bahwa 1 lapang pandang adalah 100%. Persentase infiltrasi lemak dapat dihitung dengan rumus:

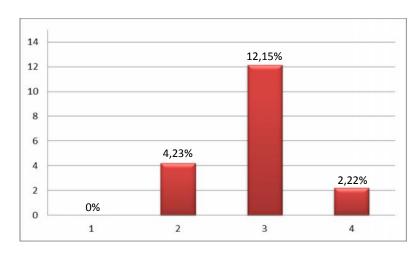
Hasil

A. Gambaran Histopatologi Sel Otot Jantung Tikus

Pengamatan dilakukan menggunakan mikroskop cahaya perbesaran 400 kali. Gambaran histopatologi yang diamati adalah jumlah infiltrasi lemak pada sel otot jantung tikus dalam 5 lapang pandang. Hasil pengamatan histopatologi sel otot jantung tiap kelompok perlakuan tampak pada Gambar 1:

Gambar 1. Gambar Sel Otot Jantung Tikus yang Dipulas Dengan Hematoxylin Eosin dengan Perbesaran 400x.

Keterangan: A: Kelompok kontrol, B: Kelompok perlakuan minyak goreng 3 jam pemanasan, C: Kelompok perlakuan minyak goreng 6 jam pemanasan, D: Kelompok perlakuan minyak goreng 6 jam pemanasan yang dimurnikan dengan buah mengkudu, 1: Infiltrasi lemak dan 2: Sel otot jantung.


B. Analisis Mikroskopik Gambaran Histopatologi Sel Otot Jantung Tikus

Persentase infiltrasi lemak di antara sel otot jantung pada setiap kelompok tampak pada Tabel 1:

Tabel 1. Persentase dan Rerata Infiltrasi Lemak Sel Otot Jantung Tikus

No.	Kelompok	Tikus	Persentase Infiltrasi Lemak	Rerata
1	1	A1	0	
2	1	A2	0	
3	1	A4	0	0 ± 0
4	1	A5	0	
5	1	A6	0	
6	2	B1	3,38%	
7	2	B2	4,02%	
8	2	B4	5,50%	$4,23 \pm 0,85$
9	2	B5	4,62%	
10	2	В7	3,63%	
11	3	C1	11,63%	
12	3	C3	12,55%	
13	3	C4	13,40%	$12,15 \pm 2,03$
14	3	C5	14,21%	
15	3	C6	8,95%	
16	4	D3	2,10%	
17	4	D4	2,58%	
18	4	D5	2,01%	$2,22 \pm 0,33$
19	4	D6	2,57%	
20	4	D7	1,86%	

Grafik perbandingan persentase infiltrasi lemak tampak pada Gambar 2:

Gambar 2. Grafik Perbandingan Persentase Sel yang Mengalami Infiltrasi Lemak Keterangan: 1: Kelompok kontrol, 2: Kelompok perlakuan minyak goreng 3 jam pemanasan, 3: Kelompok perlakuan minyak goreng 6 jam pemanasan dan 4: Kelompok perlakuan minyak goreng 6 jam pemanasan yang dimurnikan dengan buah mengkudu.

Hasil penelitian dianalisis apakah memiliki distribusi normal (p>0,05) atau tidak secara statistik dengan uji normalitas *Shapiro Wilk* dan didapatkan distribusi normal. Kemudian dilakukan uji homogenitas *Levene* untuk mengetahui apakah dua atau lebih kelompok data memiliki varians yang sama (p>0,05) atau tidak dan didapatkan nilai p=0,009 yang artinya varians data tidak sama maka hasil uji *one way ANOVA* pada tabel berikutnya tidak valid. Oleh karena itu, sebagai alternatif maka dilakukanlah uji *Kruskal–Wallis*. Dengan uji *Kruskal–Wallis* diperoleh nilai p=0,000. Oleh karena nilai p<0,05, maka dapat diambil kesimpulan bahwa paling tidak terdapat perbedaan perubahan infiltrasi lemak pada sel otot jantung tikus antara dua kelompok. Untuk mengetahui kelompok mana yang mempunyai perbedaan, maka dilakukan analisis *Post Hoc Mann–Whitney*. Hasil analisis *Post Hoc Mann–Whitney* dapat dilihat pada Tabel 2:

Tabel 2. Analisis *Post Hoc Mann–Whitney* Infiltrasi Lemak antar Kelompok

KELOMPOK	1	2	3	4
1	_	0,005	0,005	0,005
2	_	_	0,009	0,009
3	_	_	_	0,009
4	_	_	_	_

Dengan p value<0,05 maka antara kelompok 1, 2, 3 dan 4 mempunyai perbedaan jumlah perubahan infiltrasi lemak pada sel otot jantung.

Pembahasan

Pada kelompok 1 (kontrol) secara mikroskopik bentuk selnya terlihat normal, tersusun seperti serabut/garis—garis melintang, bentuk sel silindris bercabang tunggal seperti membentuk anyaman, ada satu atau dua inti yang terletak di tengah sel, tidak ada pembengkakan dan infiltrasi lemak. Pada kelompok 2 (minyak goreng 3 jam pemanasan) secara mikroskopik bentuk sel

otot jantung terlihat mengalami pembengkakan, inti selnya terlihat membesar dan terdapat infiltrasi lemak diantara sel otot jantung sebanyak 4,23%. Pada kelompok 3 (minyak goreng dengan 6 jam pemanasan) secara mikroskopik bentuk sel otot jantung terlihat mengalami pembengkakan, inti selnya terlihat membesar dan banyak di perifer dan terdapat infiltrasi lemak diantara sel otot jantung sebanyak 12,15%. Persentase infiltrasi lemak paling banyak dibandingkan dengan kelompok 2 dan 4. Pada kelompok 4 (minyak goreng 6 jam pemanasan yang dimurnikan dengan buah mengkudu) secara mikroskopik bentuk sel otot jantung terlihat sudah tidak mengalami pembengkakan, inti selnya terlihat sudah mengecil, dan terdapat infiltrasi lemak diantara sel otot jantung sebanyak 2,55%. Persentase infiltrasi lemak paling sedikit dibandingkan dengan kelompok 2 dan 3.

Pada sel otot jantung yang mendapatkan minyak goreng 3 jam dan 6 jam pemanasan juga terlihat infiltrasi lemak. Hal ini dikarenakan terjadi perubahan metabolisme lemak pada tikus karena mendapatkan asupan lemak yang berlebihan sehingga mengakibatkan akumulasi dari triasilgliserol tersebut pada otot, salah satunya adalah otot jantung. Selain itu pemanasan minyak goreng bekas akan mengakibatkan terbentuknnya suatu radikal bebas yaitu peroksida dan hidroperoksida (Ketaren, 2008). Kedua hal tersebut menginduksi terjadinya cedera atau jejas sel otot jantung yang menyebabkan efek yang merusak pada struktur dan fungsi sel tersebut. Salah satu manifestasinya adalah perubahan morfologi sel yang bersifat *reversible*. Perubahan perlemakan (*fatty change*) menggambarkan adanya penimbunan abnormal trigliserid dalam sel parenkim. Perlemakan bermanifestasi sebagai vakuola–vakuola lemak di dalam sitoplasma (Mitchell dan Cotran, 2007). Akumulasi tetes–tetes lemak atau perlemakan sel merupakan perubahan morfologik yang bersifat *reversible* ketika sel bereaksi terhadap cedera atau jejas.

Akumulasi abnormal lemak pada sel bisa mengakibatkan toksisitas sel atau yang lebih dikenal lipotoksisitas. Dimana lemak menembus membran sel melalui transporter *fatty acid transport protein* (Malhi and Gores, 2008). Kerusakan sel tersebut menyebabkan terjadinya infiltrasi lemak, sel lemak menembus membran sel dan terjadi akumlasi sel–sel lemak intraseluler yaitu

diantara sel parenkim suatu organ, salah satunya sel otot jantung. Kemungkinan hal ini sebagai akibat transformasi sel jaringan pada penyambung interstitial ke dalam sel lemak (Tambayong, 2000).

Tikus yang mendapatkan asupan lemak tak jenuh secara berlebihan bisa mengakibatkan gangguan daripada metabolisme lemak. Dimana metabolisme lemak itu berbeda dengan metabolisme karbohidrat dan protein yang langsung dibawa ke dalam hepar. Sedangkan lemak akan dibawa menuju jaringan adiposa dan otot yang mempunyai enzim *lipoprotein lipase* yang menghidrolisis lemak menjadi asam lemak bebas. Asam lemak bebas inilah yang diangkut menuju hepar untuk dimetabolisme (Noviani, 2010).

Lalu asam lemak bebas bisa mengalami esterifikasi menjadi triasilgliserol baik pada hepar, jaringan adiposa maupun otot. Asupan lemak yang berlebihan akan mengakibatkan akumulasi dari triasilgliserol tersebut pada otot, salah satunya adalah otot jantung. Akumulasi triasilgliserol pada hepar, akan diangkut oleh VLDL ke dalam aliran darah kemudian menuju ke jaringan perifer atau otot yang mempunyai enzim *lipoprotein lipase*. Sehingga semakin banyak akumulasi lemak pada sel otot jantung. Keadaan ini disebut perlemakan otot jantung (Mayes,2003).

Kelompok 1 yang merupakan kelompok kontrol tidak terdapat infiltrasi lemak pada sel otot jantung dan bentuk sel normal. Sedangkan kelompok 2 yang mendapat perlakuan pemberian minyak goreng 3 jam pemanasan terdapat infiltrasi lemak pada sel otot jantunng tidak sebanyak kelompok 3 yang mendapatkan minyak goreng 6 jam pemanasan, hal ini dikarenakan semakin lama proses pemanasan yang terjadi pada minyak goreng akan semakin banyak radikal bebas yang terbentuk, yang akan menyebabkan kerusakan sel sehingga terjadi lebih banyak infiltrasi lemak pada kelompok 3.

Sedangkan rerata persentase infiltrasi lemak pada sel otot jantung kelompok 4 dengan perlakuan minyak goreng yang dimurnikan dengan buah mengkudu, infiltrasi lemak yang terjadi sangat sedikit jika dibandingkan dengan kelompok 2 dan 3. Hal tersebut dikarenakan buah mengkudu (*Morinda citrifolia*) memiliki kandungan antioksidan. Buah mengkudu memiliki senyawa antioksidan

yakni selenium yang mencegah kerusakan sel yang disebabkan oleh radikal bebas. Selenium merupakan ko-faktor dari enzim glutathione peroksidase selain membantu mencegah kerusakan sel yang disebabkan oleh radikal bebas. Asam askorbat (vitamin C), dapat menjaga serangan oksidasi secara eksogen dan endogen. Beta karoten, menjaga proses pengrusakan oksidasi dinding sel yang terdiri dari lemak. Flavonoid, dapat mengurangi aktivitas radikal hidroksi, anion superoksida dan radikal peroksida dengan melindungi lipid membran terhadap reaksi oksidasi yang merusak (Surya, 2009). Apabila aktivitas senyawa radikal bebas pada minyak goreng tersebut dihambat oleh antioksidan, maka tidak akan terjadi kerusakan sel. Bisa dilihat pada gambaran histopatologi sel otot jantung dan penurunan jumlah infiltrasi lemak pada kelompok 4. Dengan adanya minyak goreng bekas yang dimurnikan dengan buah mengkudu ini bisa menjadi suatu dasar yang bisa diaplikasikan pada masyarakat luas supaya tidak menggunakan minyak goreng bekas yang tentunya mengandung senyawa radikal bebas. Sehingga minyak tersebut menjadi lebih aman untuk digunakan sebagai bahan baku untuk penggorengan bahan makanan.

Simpulan

Simpulan dari penelitian ini adalah pemberian minyak goreng bekas 3 jam dan 6 jam pemanasan menyebabkan peningkatan jumlah persentase infiltrasi lemak pada sel otot jantung tikus *Wistar* jantan sebesar $4,23 \pm 0,85$ dan $12,15 \pm 2,03$. Pemberian minyak goreng bekas 6 jam pemanasan yang dimurnikan buah mengkudu (*Morinda citrifolia*) menyebabkan penurunan jumlah persentase infiltrasi lemak pada sel otot jantung tikus *Wistar* jantan sebesar $2,22 \pm 0,33$.

Daftar pustaka

- Ketaren S. 2008. Pengantar teknologi minyak dan lemak pangan. Jakarta: UI. 1(1): 1–185.
- Mahmudatussa AI. 2013. Modul minyak goreng. Bandung: Universitas Pendidikan Indonesia. 1: 1–35.
- Malhi H. and Gores GJ. 2008. Molecular mechanism of lipotoxicity in nonalcoholic fatty liver disease. Semin liver dis. 28 (4): 360–9.
- Mayes PH. 2003. Pengangkutan dan Penyimpanan Lemak. Dalam: Murray RK. Biokimia Harper. Jakarta: EGC. 25(1): 217-269.
- Mitchell RN. dan Cotran RS. 2007. Jejas, adaptasi, dan kematian sel. Dalam: Robbins. Buku ajar patologi. Jakarta: EGC. 7(1): 4–33.
- Noeltrg. Indonesia bebas minyak curah tahun 2015. 2012. Direktorat jendral perdagangan dalam negeri. 8 September 2013. http://ditjenpdn.kemendag.go.id/index.php.
- Noviani C. 2010. Pemberian *l-carnitine* dapat memperbaiki profil lipid darah tikus putih yang hiperkolestrolemia. Tesis. Bali: Unud. hlm. 9–27.
- Rukmini A. 2007. Regenerasi minyak goreng bekas dengan arang sekam menekan kerusakan organ tubuh. J. Seminar Nasional Teknologi. 10(2): 1–9.
- Surya H. 2009. Efek ekstrak buah mengkudu (*Morinda citrifolia l*) terhadap kadar enzim SGOT dan SGPT pada mencit dengan induksi karbon tetraklorida. Skripsi. Surakarta: UNS. hlm. 7–16.
- Tambayong, J. 2000. Patofisiologi konsep klinis proses-proses penyakit. Jakarta: EGC. 6(1): 125.